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Wigner Crystallization in inhomogeneous one dimensional wires
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We explore the theory of electrons confined by one dimensional power law potentials. We cal-
culate the density profile in the high density electron gas, the low density Wigner crystal, and the
intermediate regime. We extract the momentum space wavefunction of the electron at the Fermi
surface, which can be measured in experiments on tunneling between parallel wires. The onset of
localization leads to a dramatic broadening of the momentum space wavefunction together with
pronounced sharpening (in energy) of the tunneling spectrum.

PACS numbers: 73.21.Hb, 71.10.Pm, 73.23.Hk, 71.10.Hf

Advances in microprocessing have enabled scientists to
construct ultra-high mobility one dimensional wires with
transverse size d⊥ ≈ 20nm, which is sufficiently small to
freeze out all transverse electronic motion1 . By allowing
tunneling between two such parallel wires, Auslaender et
al.2 have been able to map out the spectrum of elemen-
tary excitations, providing good evidence of spin-charge
separation. Further experiments have found evidence of
electronic localization in these wires when a gate elec-
trode is used to deplete the density of electrons3. This
localization is possibly caused by an interaction driven
transition into a Wigner crystal state4,5, where each elec-
tron is localized by repulsion from its neighbors. Here
we investigate the theory of such crystallization in one
dimensional wires.

The wires used in these experiments are not infinitely
long. Their finite length, which is controlled by electro-
static potentials, leads to striking fringes in the tunneling
spectrum6. These fringes cannot be explained by parti-
cles bounded by ‘infinite walls’, but require a more ac-
curate modeling of the confinement. Tserkovnyak et al.6

found that the experimental results were consistent with
a power-law potential Vext(x) = V0x

β , with 6 < β < 7.
In discussing experimental signatures of crystallization
in these systems, we must take into account this same
physics, and explore the interplay between the external
confining potential and the interparticle Coulomb repul-
sion. Due to the influence of the gate electrode, the elec-
trons in the localization experiment3 feel a complicated
potential, with two minima separated by a barrier.

After presenting our model (sec. I) and reviewing how
tunneling measurements are related to microscopic prop-
erties (sec. II) we introduce a series of mean field ap-
proximations: a Thomas-Fermi description of the high
density electron gas (sec. III); a semiclassical descrip-
tion of the Wigner crystal (sec. IV); and a Hartree-Fock
description of the cross-over (sec. V). These models pro-
vide direct insight into the experimental signatures of this
transition. Our approach complements prior theoretical
work, which predominantly treated homogeneous infinite
systems7, small numbers of electrons8, or infinite square
well potentials9.

I. MODEL

We consider a gas of electrons with σ = 2 spin
states confined to a one dimensional wire, experiencing
an external potential Vext(x), where x is the coordinate
along the wire. The electrons interact through pairwise
three dimensional coulomb interactions, U3d(ri − rj) =

e2/(4πǫ|ri − rj |) = (h̄2/m∗a)1/|ri − rj |, where ǫ is the
dielectric constant of the medium and m∗ is the elec-
trons effective mass. Using parameters for n-doped GaAs
(ǫ ≈ 13,m∗ ≈ 0.067me, where me is the free-space
electron mass), the effective Bohr radius is quite large,
a ≈ 10−8m. In this wire, the electronic wavefunction
has a transverse size d⊥ ≈ 20nm. Integrating out these
transverse dimensions, the electrons feel a regularized
Coulomb interaction U(r) = (h̄2/m∗a)fd⊥(ri − rj). Two

useful regularizations are f
(1)
d (x) = (x2 + d2)−1/2 and

f
(2)
d (x) = Min(|x|−1, d−1), where Min(x, y) is the smaller

of x and y. As d⊥ → 0 the exact form of the regular-
ization becomes unimportant. Here we mostly rely on
f (2).

One estimates the importance of correlations caused
by the Coulomb interactions by comparing the interac-
tion energy between two neighboring particles Eint =
h̄2n/am∗ to the Fermi (kinetic) energy Ef = k2

f/2m
∗ =

2π2h̄2n2/σm∗, where n is the one dimensional density
of particles, and we have assumed nd⊥ ≪ 1. Kinetic
energy dominates at high densities, when na ≫ 1/2π2.
In that limit one expects to find a liquid state, where
electrons are delocalized. Conversely, when na≪ 1/2π2,
the Coulomb interaction dominates, and a Wigner crys-
tal should be formed.

As a compromise between experimental relevance
and simplicity we concentrate on power law potentials
Vext(x) = (h̄2/2m∗)xβw−β−2, where w, which parame-
terizes the potential strength, roughly coincides with the
size of the single particle ground state in this potential.
For the relatively flat (large β) potentials used in exper-
iments, w also roughly coincides with the ‘lithographic
length,’ Llith, which is the physical distance between
the gates which generate the potential barriers. Anal-
ysis of experimental data by Tserkovnyak et al.6 show
that w ≈ 3µm. Taking the density of electrons to be
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FIG. 1: Model of potential transverse to the two wires.

n ≈ N/w, one expects crystallization when N < N∗,
with N∗ ∼ 20.

II. TUNNELING BETWEEN PARALLEL WIRES

The experiments of Auslaender et al.2 measure the tun-
neling current between the short wire described in sec-
tion I, and a parallel long wire, which we will take to be
infinite and uniform. Momentum is conserved in the tun-
neling. The wires are separated by dt ≈ 6nm, and the
barrier separating the wires has height U ≈ 300meV,
arising from the conduction band offset between the
GaAs wires, and the intervening AlGaAs. Using gate
electrodes, the experimentalists control the chemical po-
tential difference δV between the wires.10 A magnetic
field, perpendicular to the wires, gives a momentum kick
Q = eBdt/h̄ to a tunneling electron2. We therefore con-
sider the tunneling Hamiltonian,

Ĥt = −T
∑

σ

∫

dk

2π
ei(δV )tφ̂†σ(k +Q)ψ̂σ(k) + H.C., (1)

where ψ̂σ(k) =
∫

dx e−ikx ψ̂σ(x) and φ̂σ(k) =
∫

dx e−ikx φ̂σ(x) are respectively the operators which an-
nihilate particles with momentum k and spin σ in the
short and long wire. The magnitude of the tunneling
matrix element T is estimated by examining the energy
states in the double square well geometry sketched in fig-
ure 1. This one-dimensional potential is a crude model

of the physics transverse to the wires. We can identify
t ≈ δE/2, where δE is the energy splitting between the
two lowest energy single particle states. In the limit of
a deep, wide barrier (U ≫ (h̄2/m∗d2

t ), (h̄
2/m∗d2

⊥)), one
finds

δE/2 =
2π2h̄2

m∗d3
⊥κ

e−κdt, (2)

where h̄2κ2/2m∗ = U (so numerically κ ≈ 0.2/nm).
which gives T ≈ 30meV, which should be compared
to the spacing of states transverse to the wire, δE =
4π2h̄2/m2

effd
2
⊥ ≈ 1eV. Due to this separation of scales,

we treat Ht perturbatively.
A. Formal expression for tunneling current

The current operator, defined by I(t) = −∂Nψ/∂t,
where N̂ψ =

∫

dk
2π

∑

σ ψ̂
†
σ(k)ψ̂σ(k) is the number of par-

ticles in the short wire, is given by

Î(t) = −T
∫

dk

2π

∑

σ

Im
[

eiδV tφ̂†σ(k +Q, t)ψ̂σ(k, t)
]

.

(3)
To lowest order in T , the tunneling current is

〈I(t)〉 =

∫

dτ
1

i
θ(t− τ)〈[I(t), Ht(τ)]〉 (4)

= T 2AI(Q,ω = δV ), (5)

where the spectral density of current fluctuations
is related to the retarded current response func-
tion by AI(q, ω) ≡ 2ImχRI (q, ω), where χRI (q, ω) =
∫

dt eiωt (θ(t)/i) [χ>I (q, t) − χ<I (q, t)], with χ>I (q, t) =
∫

dk
2π

dk′

2π

∑

σ〈φ̂†σ(k+q, t)ψ̂σ(k, t)ψ̂†
σ(k

′, 0)φ̂σ(k
′+q, 0)〉 and

χ<I (q, t) =
∫

dk
2π

k′

2π

∑

σ〈ψ̂†
σ(k

′, 0)φ̂σ(k
′ + q, 0)φ̂†σ(k +

q, t)ψ̂σ(k, t)〉. Assuming that in the absence of tunnel-
ing the electrons in the two wires are independent,11 the
expectation values can be factored, leading to

AI(q, ω) =

∫

dk

2π

dk′

2π

∑

σ

∫

dν

2π

[

G<φσ(k, k
′; ν)G>ψσ(k + q, k′ + q; ν − ω) −G>φσ(k, k′; ν)G<ψσ(k + q, k′ + q; ν − ω)

]

(6)

=

∫

dk

2π

dk′

2π

∑

σ

∫

dν

2π
[f(ν) − f(ν − ω)]Aψσ(k, k

′; ν)Aφσ(k + q, k′ + q; ν − ω), (7)

where the single particle Greens functions

G
>/<
φσ (k, k′;ω) =

∫

dt eiωtG
>/<
φσ (k, k′; t), are given

by G>φσ(k, k
′; t) = 〈φσ(k, t)φ†σ(k

′, 0)〉, G<φσ(k, k′; t) =

−〈φ†σ(k′, 0)φσ(k, t)〉, and equivalent expressions hold

for G
>/<
ψ σ (k, k′, ω). These Greens functions are related

to the appropriate single particle spectral density by
G>(ω) = [1 − f(ω)]A(ω) and G<(ω) = f(ω)A(ω), where
f(ω) = [eβ(ω−µ) + 1]−1 is the Fermi function.

If we use the free electron spectral density for the long
wire, Aφ σ(k, k

′;ω) = (2π)2δ(k − k′)δ(ω − k2/2m∗), one
arrives at the simple result that the tunneling current is
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a direct measure of the single particle spectral density in
the short wire,

AI(ω, q) =

∫

dk

2π

∑

σ

[

f(ω + k2/2m∗) − f(k2/2m∗)
]

×Aψ σ(k − q, ω + k2/2m∗) (8)

≈ βω

∫

dk

2π

∑

σ

fk(1 − fk)Aψ σ(k − q, k2/2m∗),

where the last line neglects terms of order ω2, and uses
fk = f(k2/2m∗).

At zero temperature, the Fermi functions become step
functions and to lowest order in ω, equation (8) becomes

AI(ω, q) =
ω

2π

√

m∗

2Ef
∑

σ

[

Aψ σ(
√

2m∗Ef − q, Ef )

+Aψ σ(−
√

2m∗Ef − q, Ef )
]

. (9)

B. General Features

From the definition Aψ σ(k, ω) = G>ψ σ(k, ω) +

G<ψ,σ(k, ω), the single particle spectral density can be
written as

Aψ σ(k, ω) =
2π

Z

∑

if

e−β(Ei−µNi)

[

∣

∣

∣
〈i|ψ̂σ(k)|f〉

∣

∣

∣

2

δ(ω − (Ef − Ei)) −
∣

∣

∣
〈f |ψ̂σ(k)|i〉

∣

∣

∣

2

δ(ω − (Ei − Ef ))

]

(10)

where |i〉 represents a many body state containing
Ni electrons and possessing energy Ei. Normaliza-
tion is given by the grand partition function Z =
∑

i e
−β(Ei−µNi). At zero temperature, the sum over i

is omitted, and |i〉 is replace by the ground state.

One thus sees that current flows whenever momentum
and energy can be conserved in the tunneling process.
The magnitude of the current is set by the degree of
overlap between states with different particle number.

When the electrons become localized in a Wigner crys-
tal, the overlap between states with different particle
number becomes extremely small (because removing a
particle results in rearrangement of the entire crystal –
a form of orthogonality catastrophe). Consequently, the
average tunneling current should drop. This drop in aver-
age current is accompanied by a sharpening of line-widths
and does not lead to a complete loss of the experimen-
tal signal. Instead, it leads to “coulomb-blockade” type
peaks, where current only flows for discrete values of δV .

One will see discrete peaks if the line width is small
compared to the level spacing in the short wire, δE ∼
(2π)2h̄2/m∗w2 ∼ 0.05meV. Assuming that the lifetime is
only due to coupling between the two wires, then the line
width is given by an expression very similar to that for
the tunneling current. Since T is large on the scale of δE,
one will only see these discrete peaks once the overlaps
in (10) become extremely small.

C. Independent particle approximation

In an independent particle picture (such as Hartree-
Fock), Aψ σ(k, ω) =

∑

j |φj σ(k)|2 2πδ(ω − Ej σ), where

φj,σ(k) is the momentum space wavefunction of the j’s
single electron orbital of spin σ particles, with energy
Ej σ. In general φj ↑ 6= φj ↓, and the orbitals are cho-
sen self-consistently. Within such an approximation the
tunneling current is

I = I0
∑

nσ

|φn σ(k)|2 δ(En σ − Ef), (11)

where, I0 = T 2δV /(2π)
√

m∗/2Ef , k =
√

2m∗Ef−Q, and
we have assumed that Q = eBdt/h̄ > 0. The tunneling
current therefore measures the momentum space density
of the particles at the Fermi surface. If there are no
particles at the Fermi surface, then no current flows.

The delta functions in (11) are broadened by finite
lifetime and finite temperature. In particular if there
are two different states i, j with energies Ei/j , and in-
verse lifetimes Γ, which satisfy |Ei/j − Ef | ≪ Γ or
|Ei/j − Ef | ≪ kBT , then the current is proportional to
the incoherent sum

I ∝ |φi(k)|2 + |φj(k)|2. (12)

This feature will be important in high symmetry situa-
tions where there is a near degeneracy (see, for example,
section VA).

In the remaining sections of this paper, we calculate
φj(k).
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FIG. 2: Interaction induced change of dimensionless density
n̄ of spin-1/2 electron gas confined to a one-dimensional po-
tential V (x) ∝ x6. Interaction parameters are ā = 10 and

d̄ = 10−3. Solid line: Equation (15) using regularization f (2);
dashed line: approximation described above eq. (16); dotted
line: noninteracting profile. Inset: Renormalized dimension-
less cloud radius t as a function of 1/ā from solving eq. (16).

III. HIGH DENSITY: THOMAS-FERMI

The simplest picture of a gas of electrons in a confined
geometry comes from the Thomas-Fermi (local density)
approximation, where the system is described by a lo-
cal chemical potential µ(x) = µ0 − Veff(x). The global
chemical potential is µ0 = h̄2k2

0/2m
∗, and the effective

potential Veff(x) includes both the external field and the
interactions between the particles. Within the Hartree
approximation, which is valid at high densities na ≫ 1,
the effective potential is

Veff(x) =

∫

dx′ U(x− x′)n(x′). (13)

The chemical potential is then related to the density
by the relationship for a homogeneous gas, µ(r) =
2π2h̄2n2/σ2m∗. Self-consistency requires that the den-
sity obeys a nonlinear integral equation,

µ0 = Vext(x) +

∫

dx′U(x− x′)n(r′) +
2π2h̄2

σ2m∗
n2(r). (14)

This local density approximation only makes sense if
the density changes slowly compared to the interpar-
ticle spacing [(∂xn(x))/n(x)2 ≪ 1]. We write (14)
in dimensionless form by introducing k2

0 = 2m∗µ0/h̄
2,

Rβ = k2
0w

2+β , r̄ = r/R, ā = k0a, n̄ = k0n, d̄ = d/R,

4π2

σ2
n̄2(r) = 1 − r̄β − 2

ā

∫ 1

−1

fd̄(r̄ − r̄′)n(r̄′)dr̄′. (15)

At fixed chemical potential the interactions can only
reduce the density. Therefore the density is al-
ways bounded by the noninteracting result, n̄0 =
(σ/2π)

√
1 − r̄β . In particular, the density always van-

ishes for r̄ > 1. For very steep potentials, β → ∞, the

k
f

[1
/
n
m

]

µ0 [eV]

1

1 10.

0.1

0.10.01

FIG. 3: Peak wavevector kf = tk0 of wavefunction at fermi
surface as a function of chemical potential µ0 = h̄2k2

0/2m∗

within the Thomas-Fermi approximation. Dotted line shows
noninteracting result, t = 1. Solid line includes Coulomb
interactions with a = 10nm, d⊥ = 20nm, in a power law trap
with β = 6 and w = 3µm. This approximation will break
down when kf

<∼ 1/a.

noninteracting Thomas-Fermi radius R approaches the
trap length, R/w ≈ 1 + 2β−1 log(k0w) + O(β−2).

For a ≫ 1, equation (15) can be solved iteratively12.
In this limit, the interactions predominately renormalize
the chemical potential. Approximating the integral in
(15) by its value at r̄ = 0, one self-consistently finds that

(2π/σ)n̄(r̄) ≈
√
t2 − r̄β where t solves the transcendental

equation

t2 = 1 − σ

πā
t(A+ 4 log t). (16)

The parameter A depends logarithmically on the cut-
off d⊥. For the regularization f2, A = 1 − 4/β +

(2/β) log(4/dβ⊥). Figure 2 compares this approximation
to the numerical solution of (15), and the inset shows t
as a function of ā.

A. Wavefunction of last occupied state

As previously explained, within an independent par-
ticle picture the tunneling current between two parallel
wires is proportional to the momentum space wavefunc-
tion of the highest occupied single particle state. This
momentum space wavefunction will be strongly peaked
about kf (r = 0), which can be approximated as k0t,

where h̄2k2
0/2m

∗ = µ0, and t is given by eq. (16). Fig-
ure 2 shows kf ≡ kf (r = 0) as a function of µ0 for rea-
sonable parameters.

To go beyond this single wavevector approximation,
we use semiclassical means to calculate the wavefunction
of the state at the Fermi surface. We find the modulus
by imagining that we reduce the chemical potential by a
very small amount, so that this last state goes from filled
to empty. The density change must coincide with the
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density nf(r) of that last single particle state, implying
that

nf (x) = |ψf (x)|2 = Ω
∂n(r)

∂µ0
, (17)

where Ω is a normalization constant determined by set-
ting

∫

nf (x) dx = 1. This wavefunction should have a
phase whose derivative gives the local fermi momentum.

∂ϕf (x)

∂x
= ±

√

2m∗µ(x) ≡ kf (x). (18)

The + and − solutions correspond to left-moving and
right moving waves. In principle, one must combine
these two solutions to form a standing wave. Within
the Hartree approximation, this procedure is equivalent
to finding the WKB wavefunction in the self-consistent
potential. We do not discuss the details as when we com-
pute the momentum space wavefunction, only the struc-
ture near k = 0 will be affected by how we superimpose
these two solutions.

In the case where the Coulomb interaction can be ne-
glected, equation (17) reduces to |ψf (x)| ∝ kf (x)

−1/2 ∝
1/

√

µ0 − Vext(x), and equation (18) becomes ∂ϕ/∂x =
kf (x). Not surprisingly, in this limit ψf (x) is exactly

the WKB wavefunction for an electron with energy µ0

in the potential Vext(x). Our arguments therefore re-
duce to the semiclassical arguments of Tserkovnyak et
al.6 for the noninteracting gas. The analysis is very
similar for our approximation where n̄2 ∝ t2 − r̄β .
Since interactions only renormalize the chemical poten-
tial, the derivative ∂n2(r)/∂µ0 is a constant, indepen-
dent of space, and we can use the noninteracting result
with a renormalized chemical potential. That is, we take
kf (x) =

√

t2µ0 − Vext(x) = k0

√
t2 − x̄β .

Following Tserkovnyak et al.6, we calculate the mo-
mentum space wavefunction, φf (q) =

∫

dxψf (x)e
−iqx by

Laplace’s method. The Fourier integral is dominated
by regions of space near where q = ±kf (x). Moreover,
since φf (q) is peaked around q = ±kf (0), we can ex-
pand ϕ(x) near x = 0. Since |φf (q)| is symmetric, there
is no loss of generality in taking q > 0. We introduce
p = (kf (0)−q)X , with Xβ+1 = 2kfw

β+2. Changing vari-
ables to y = px/X , and assuming (kf (0) − q) ≪ kf (0),
we find

φf (q)

Ω′
= Re

[
∫ ∞

0

dy exp

(

ipy − i
yβ+1

β + 1

)]

, (19)

where Ω′ is a normalization constant. In the case β = 2,
the integral in (19) is an Airy function, though for other
values of β it is not a familiar special function. The
argument of the exponential, χ, is stationary at y = y0 =
p1/β . The curvature is χ′′(y0) = −iβp1−1/β. This is an
isolated saddle point when y2

0 |χ′′(y0)| = β|p|1+1/β ≫ 1,
in which case

φf (q)

Ω′
= Re

[
√

2π

iβp1−1/β
exp

[

i
βp1+1/β

1 + β

]

]

. (20)

By deforming the contour of integration, this equation
holds for both p > 0 and p < 0 (in the latter case one
should take the principle branch, giving p a small nega-
tive imaginary part). From (20), one sees that if β 6= ∞,
the wave function falls off exponentially as p → −∞.
For p≪ ββ/(1+β), instead of expanding about the saddle
point, we expand about y = 0, finding as p→ 0,

φf (q)

Ω′
= Re

[

(β + 1)−β/(β+1)Γ

(

1

β + 1

)

eΘ
]

(21)

Θ = p (β + 1)1/(β+1)
Γ

(

2
β+1

)

Γ
(

1
β+1

) i1/(β+1)

−i(π/2)(1/(β + 1)).

IV. LOW DENSITY: WIGNER CRYSTAL

In section III, we neglected the fact that electrons are
discrete entities and that an electron does not interact
with itself. Including this discreteness, the interaction
energy can be reduced by localizing each electron to a
small volume – maximizing the distance between the
charge distribution of neighboring particles. Since such
localization costs kinetic energy, it is only favorable in
the low density gas where interaction energy dominates
over kinetic energy.

To discuss this phase, we imagine that we have N elec-
trons, localized at positions xj where j = 1, 2, . . . , N . Ne-
glecting kinetic terms, the energy of a given configuration
is

E =
∑

j

Vext(xj) + (1/2)
∑

i6=j

U(xi − xj). (22)

As with the profile in the dense limit (fig. 2), we nu-
merically find that the resulting density is quite flat,
and is well approximated by evenly spaced electrons,
xjn ≈ j−(N+1)/2, with uniform density n. Minimizing
(22) with respect to n yields

n−1 =
2w

N

[

β + 1

2β

w

a
N2

(

logN − 1

2

)]1/(β+1)

(23)

≈ 2w

N

[

1 +
1

β + 1
log

(

wN2 logN

2a

)

+ O(β−2)

]

In this Wigner crystal state, each electron is confined
to a length ℓ < n−1. To calculate this length, and the
wavefunction of the localized electron, we expand the po-
tential in eq. (22) for small fluctuations in the position
of one of the particles,

∂2V

∂x2
j

= V ′′
ext(xj) +

2h̄2

m∗a

∑

i6=j

|xi − xj |−3. (24)

We approximate the sum over a finite number of particles
by that of an infinite chain, taking

∑

i6=j |xi − xj |−3 ≈
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FIG. 4: Interaction dependence of the momentum space wave-
function of last single-particle state within the Hartree-Fock
approximation. Eighteen particles are confined to the wire.
Lighter colors correspond to larger values of |φ(k)|2. The
horizontal axis shows different interaction strengths parame-
terized by the ratio of the Bohr radius a to the wire length
w (note the logarithmic scale). The potential has exponent
β = 6, and a cutoff, d = 0.07w.

2n3
∑∞

l=1 l
−3 = 2ζ(3)n3. Numerically, the Riemann zeta

function is ζ(3) ≈ 1.2. The curvature of the external po-
tential is generically negligible in this limit, hence each
electron is trapped by a harmonic oscillator potential
with m∗ω2

wc = (h̄2/m∗a)4ζ(3)n3 and has a wavefunction
ψj(x) ∝ exp(−(x − xj)

2/2ℓ2) with ℓ4 = (h̄/m∗ωwc)
2 =

an−3/(4ζ(3)). This implies that the momentum space
wavefunction has modulus |ψj(k)|2 ∝ exp(−k2ℓ2).

Comparing this momentum space wavefunction to the
high density predictions [equation (19) through (21)], we
see that in the Wigner crystal, |φ(q)|2 is more spread out
in momentum space, and does not contain any oscilla-
tions.

V. HARTREE-FOCK STUDY OF CROSSOVER

We investigate the crossover between the high density
electron gas and the low density Wigner crystal within
the Hartree-Fock approximation. In the extreme lim-
its, Hartree-Fock reduces to our previous approxima-
tions. It also provides semi-quantitative understanding of
the intermediate regime. In uniform higher dimensional
systems, Hartree-Fock overestimates the stability of the
Wigner crystal13, and one therefore expects some sys-
tematic errors as compared to an exact many-body cal-
culation. This approximation also fails to capture more
exotic effects of electron correlations, such as spin-charge
separation. Experimental signatures of such effects are
subtle2, and as a first approximation it is quite reason-
able to neglect them.

Hartree-Fock is most simply thought of as a varia-
tional method, where one searches for the Slater deter-
minant which minimizes the energy14. This procedure
is highly nontrivial as the energy landscape in the space
of Slater determinants is quite complex with many local
minima. We start by considering the limit of vanishing

nw
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4

4

4
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0

0

0 2-2

(c)

(b)

(a)

FIG. 5: (Color Online) Real space electron density n. Param-
eters coincide with Fig. 4. Solid, blue dotted, and red dashed
lines correspond to total density and the density of up and
down spin electrons [In (a), the latter two curves coincide].
Panels (a), (b), (c) correspond to a/w=0.5, 0.15, 0.05.

interactions (a/w → ∞), where we find the exact solu-
tion by discretizing space and solving the single-particle
Schrodinger equation. With fixed numbers of up and
down spin electrons (n↑ and n↓), we then gradually de-
crease w/a. For each value of w/a we iteratively solve the
Hartree-Fock equations in discretized space. Although
there is no guarantee that the states we find in this man-
ner are absolute energy minima, they consistently have
lower energies than all other states that we have found
by iterating the Hartree-Fock equations from different
starting points.

An advantage of the Hartree-Fock approximation is
that since it involves an independent electron approxi-
mation, one has direct access to single-particle observ-
ables, such as the wavefunction of the last bound state.
Figure 4 shows the momentum-space wavefunction of the
last bound state for a system of eighteen particles (nine in
each spin state). For large a/w, this last single-particle
state is delocalized in real space, resulting in a series
of momentum-space peaks which are well described by
equation (19). For small a/w, this last state is localized,
resulting in a broad spread of momenta. Illustrative real-
space density profiles are shown in figures 5 a,b,c. In (a)
we see that even for arbitrarily weak interactions the real
space density is corrugated. The corrugations are caused
by the free electron response to an inhomogeneous poten-
tial and are analogous to the Friedel15 oscillations seen
in electron density near an impurity. The asymptotic be-
havior of these oscillations has been analytically calcu-
lated for harmonic confinement16. There are nine peaks
corresponding to the nine doubly occupied single particle
states. In (b) we see that as we increase the interaction
strength each of the density peaks split into two, so there
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FIG. 6: (Color Online) (a) Density of 13 electrons with a/w =
0.1, see caption of fig 5 for key. (b) Wavefunction φi(x) (solid)
and φj(x) (dashed) of the two highest highest energy occu-
pied states. (c) Momentum space wavefunctions: red dashed,
|φi(k)|2; blue dotted, |φj(k)|2; solid, (|φi(k)|2 + |φj(k)|2).

is one peak per particle. A spin-density wave appears.
In (c) we see a Wigner crystal with an antiferromagnetic
spin profile. The density varies smoothly as one increases
the interactions.

A. Fringes

When an odd number of particles form a Wigner crys-
tal the highest occupied single particle state, with wave-
function φi(r), is in a symmetric superposition of two

locations, as illustrated in figure 6, and has fringes in its
momentum space wavefunction, φi(k). The next highest
energy state, φj(r), is in the antisymmetric superposition
of these same two locations, and has momentum space
fringes which are 90 degrees out of phase with those for
φi(k). Since the splitting between these two states is ex-
ponentially small, the tunneling current is proportional
to |φi(k)|2 + |φj(k)|2 (see section II C), which, as illus-
trated in figure 6c, contains no fringes.

VI. RELATED SYSTEMS

The crystallization described here is also highly rel-
evant for studies of carbon nanotubes. Recent experi-
ments on conducting tubes with extremely small elec-
tron densities show behavior which can be interpreted in
terms of Coulomb induced localization of the electrons17.
These systems are slightly more complex than the one
discussed here because of the additional quantum num-
bers associated with the chirality of the electron motion
as it follows a spiral path along the tube.

VII. SUMMARY

We have given simple analytic theories of very high
and very low density electrons in an inhomogeneous one
dimensional potential. Using the Hartree-Fock approx-
imation we then numerically studied the cross-over be-
tween these limits. One expects that this approximation
will overestimate the stability of the crystalline phase,
while providing excellent qualitative understanding of the
crossover.
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